On Implementing the Forlan Formal Language Theory Toolset in Standard ML

Alley Stoughton
Forlan Project

- Forlan is a toolset for experimenting with the objects of formal language theory: regular expressions, finite automata, grammars, a universal programming language, etc.

- Forlan is implemented in Standard ML, as a library on top of Standard ML of New Jersey.

- Forlan is used interactively, but users can extend it via SML functions.

- Forlan currently consists of about 12,000 lines of SML code, distributed over about 40 modules. Also a Java application for editing finite automata.

- The Forlan Project also includes a draft textbook, and I’ve tried to minimize the notational distance between toolset and book.
Rationale for Choosing SML

• I chose SML as the implementation language for Forlan because:
 – SML’s concepts and notation are similar to those of mathematics;
 – and yet it is easy to write efficient code in SML.

• My hope was that it would prove possible to:
 – naturally and simply express the definitions of formal language theory in SML; and
 – implement the algorithms of formal language theory in ways that were simultaneously natural and reasonably efficient.

• My talk will assess how well SML and SML/NJ supported achieving this goal.
Conclusions

My conclusions are largely positive:

- It was typically easy to naturally and efficiently implement the book’s mathematics in SML, with both the core and module languages serving well.

- For example, most of the objects of formal language theory are naturally implemented as abstract types, and this was neatly done using structures, signatures and opaque ascription.

- SML/NJ proved robust and provided sufficient speed.
Minor Gaps Between Book and Toolset

- Lack of `nat` type.

- `int` can’t be made arbitrary precision in SML/NJ.

- Can’t use successor in patterns:

 \[
 f 0 = \cdots, \\
 f(n + 1) = \cdots f n \cdots, \text{ for all } n \in \mathbb{N}
 \]

 versus

  ```plaintext
  fun f 0 = ...
  | f n = ... f(n - 1) ...
  ```
Main Types

- Open arrows are conversions; Closed arrows are injection/projection pairs.
Symbols: including 0–9, a–z and A–Z.

Strings: type str = sym list
Main Types

- type 'a total_ordering = 'a * 'a -> order plus axioms.
- Ordered sets.
- Regular expressions.
• Finite automata meaning given using labeled paths.

• **rfa**: transitions labeled by regular expressions.

• **fa**: transitions labeled by strings.
Main Types

- **sym**
- **str**
- **'a total_ordering**
- **'a set**
- **reg**
- **rfa**
- **gram**
- **prog**
- **fa**
- **pt**
- **cp**
- **efag**
- **nfa**
- **dfa**
- **lp**
- **var**

- **efa**: transitions labeled by strings of length at most 1.
- **nfa**: transitions labeled by strings of length 1.
- **dfa**: **nfa** plus determinism.
Main Types

- Context-free grammars given meaning using parse trees.
- Functional programs for computability theory.
- Closed programs—no free variables—can be evaluated.
Example

Define

\[\text{AllFollow} \in \{0, 1\}^* \times \{0, 1\}^* \rightarrow \mathcal{P}(\{0, 1\}^*) \]

by: for all \(x, y \in \{0, 1\}^* \),

\[\text{AllFollow}(x, y) = \{ w \in \{0, 1\}^* \mid \text{for all } u, v \in \{0, 1\}^*, \text{ if } w = uxy, \text{ then } y \text{ is a substring of } v \} \].

Let’s see how we can find, as a function of \(x, y \in \{0, 1\}^* \), a minimized DFA accepting \(\text{AllFollow}(x, y) \).
Example

In the file `examp.sml` we put:

```sml
val regToEFA = faToEFA o regToFA;
val efaToDFA = nfaToDFA o efaToNFA;
val regToDFA = efaToDFA o regToEFA;
val minAndRen = DFA.renameStatesCanonically o DFA.minimize;
val allStrDFA = minAndRen(regToDFA(Reg.fromString "(0 + 1)*"));
val allStrEFA = injDFAToEFA allStrDFA;
val strToEFA = faToEFA o FA.fromStr;
```

- The lack of subtyping necessitates use of explicit injections.
fun hasSubEFA x =
 EFA.concat
 (allStrEFA,
 EFA.concat(strToEFA x, allStrEFA));

val hasSubDFA = minAndRen o efaToDFA o hasSubEFA;

fun hasNotSubDFA x =
 minAndRen(DFA.minus(allStrDFA, hasSubDFA x));

- The lack of dependent types means functions that may only be called with strings in \(\{0, 1\}^* \), and which return automata whose alphabets are \(\{0, 1\} \), will have imprecise types.
fun someNotFollowEFA(x, y) =
EFA.concat
(allStrEFA,
EFA.concat
(strToEFA x, injDFAToEFA(hasNotSubDFA y)));

val someNotFollowDFA =
minAndRen o efaToDFA o someNotFollowEFA;

fun allFollowDFA(x, y) =
minAndRen
(DFA.minus(allStrDFA, someNotFollowDFA(x, y)));
Example

- use "examp.sml";

[opening examp.sml]
val regToEFA = fn : reg -> efa
val efaToDFA = fn : efa -> dfa
val regToDFA = fn : reg -> dfa
val minAndRen = fn : dfa -> dfa
val allStrDFA = - : dfa
val allStrEFA = - : efa
val strToEFA = fn : str -> efa
val hasSubEFA = fn : str -> efa
val hasSubDFA = fn : str -> dfa
val hasNotSubDFA = fn : str -> dfa
val someNotFollowEFA = fn : str * str -> efa
val someNotFollowDFA = fn : str * str -> dfa
val allFollowDFA = fn : str * str -> dfa
val it = () : unit
Example

- val dfa =
 = allFollowDFA
 = (Str.fromString "01", Str.fromString "10");
val dfa = - : dfa
- FA.jforlanEdit(injDFAToFA dfa);
val it = - : fa
Example

A, 0 -> C; A, 1 -> A; B, 0 -> C; B, 1 -> B; C, 0 -> C; C, 1 -> E; D, 0 -> D; D, 1 -> E; E, 0 -> D; E, 1 -> B
Example

- val accepted = DFA.accepted dfa;

val accepted = fn : str -> bool

- val find = DFA.findAcceptingLP dfa;

val find = fn : str -> lp
Example

- accepted(Str.fromString "0101010");
val it = false : bool
Example

- LP.output("", find(Str.fromString "010110"));
 A, 0 => C, 1 => E, 0 => D, 1 => E, 1 => B, 0 => C
val it = () : unit
Ordered Sets

The signature \textbf{SET} of the structure \textbf{Set} includes:

\begin{verbatim}
 type 'a set
 val memb : 'a total_ordering -> 'a * 'a set -> bool
 val fromList : 'a total_ordering -> 'a list -> 'a set
 val toList : 'a set -> 'a list
 val empty : 'a set
 val sing : 'a -> 'a set
 val map : 'b total_ordering -> ('a -> 'b) -> 'a set -> 'b set
 val union : 'a total_ordering -> 'a set * 'a set -> 'a set
\end{verbatim}

- Each value of type \textbf{'a set} has a corresponding total ordering \textit{cmp}.
- But the absence of dependent types means that a total ordering may not be compatible with a set or sets.
Ordered Sets

As a workaround, I’ve used specifications to explain how the total orderings and sets must correspond.

```latex
val union : 'a total_ordering -> 'a set * 'a set -> 'a set
```

If \(xs \) and \(ys \) are compatible with \(cmp \), then \(\text{union}(xs, ys) \) returns the set that is compatible with \(cmp \) and is the union of \(xs \) and \(ys \), i.e., the set \(zs \) such that, for all values \(z \) of type \('a \), \(\text{memb} \ cmp \ (z, zs) \) iff \(\text{memb} \ cmp \ (z, xs) \) or \(\text{memb} \ cmp \ (z, ys) \).

But such specifications aren’t even typechecked, much less subjected to automatic or semi-automatic theorem proving.
Ordered Sets

For each instance of 'a set that is used frequently by end users, a specialized structure is provided that hard-wires the right total ordering.

E.g., the signature SYM_SET includes:

```ml
val memb : Sym.sym * Sym.sym Set.set -> bool
val fromList : Sym.sym list -> Sym.sym Set.set
val map :
  ('a -> Sym.sym) -> 'a Set.set -> Sym.sym Set.set
val union :
  Sym.sym Set.set * Sym.sym Set.set -> Sym.sym Set.set
```

And the structure SymSet includes:

```ml
val memb = Set.memb Sym.compare
val fromList = Set.fromList Sym.compare
val map = fn f => Set.map Sym.compare f
val union = Set.union Sym.compare
```
Lack of Support for Specifications

- In documenting Forlan’s implementation, I was frustrated by the lack of support in SML for expressing specifications, both of correctness and termination.

- SML even lacks syntax for specifying the types of local functions.

- Making the programmer express correctness and termination specifications in an adhoc syntax within comments means that such specifications can’t even be typechecked.

- I believe a modern language should allow specifications to be formally expressed, so that implementations may type-check them, and—ideally—will employ a theorem prover or proof assistant to assess their validity.

- Experience with Leino’s Dafny suggests that—in a version of SML with support for specifications—many specifications could be automatically verified.
Lack of Recursive Modules

SML’s lack of recursive modules necessitated careful, and sometimes non-optimal, placement of functions involving types from multiple modules.

For example, the RFA structure is concerned with converting FAs to regular expressions:

\[
\begin{align*}
\text{val fromFA} & : (\text{Reg.reg} \rightarrow \text{Reg.reg}) \rightarrow \text{FA.fa} \rightarrow \text{rfa} \\
\text{val toReg} & : (\text{Reg.reg} \rightarrow \text{Reg.reg}) \rightarrow \text{rfa} \rightarrow \text{Reg.reg} \\
\text{val faToReg} & : (\text{Reg.reg} \rightarrow \text{Reg.reg}) \rightarrow \text{FA.fa} \rightarrow \text{Reg.reg}
\end{align*}
\]

Because \text{faToReg}'s type doesn’t involve \text{rfa}, the user might expect either or both of \text{FA} or \text{Reg} to mirror it.

But this is impossible:

- it can’t be mirrored by \text{FA}, because RFA references \text{FA}; and
- it can’t be mirrored by \text{Reg}, because RFA references \text{Reg}.

26
Lack of Subtyping

The signature \textbf{FA} of the \textbf{FA} structure includes:

\begin{verbatim}
 type concr =
 | {stats : Sym.sym Set.set,
 start : Sym.sym,
 accepting : Sym.sym Set.set,
 trans : Tran.tran Set.set}

 type fa
 val fromConcr : concr -> fa
 val toConcr : fa -> concr
\end{verbatim}

The abstract types \textbf{EFA.efa}, \textbf{NFA.nfa} and \textbf{DFA.dfa} are implemented as—increasingly restrictive—subsets of \textbf{fa}.

But because SML lacks subtyping:

- explicit injection functions are needed; and

- the \textbf{EFA}, \textbf{NFA} and \textbf{DFA} structures must pack and unpack their values using \textbf{FA}.
Lack of Subtyping

For instance, the **DFA** structure includes:

```ml
type dfa = FA.fa
fun injToFA(dfa : dfa) : FA.fa = dfa
fun injToEFA dfa = EFA.projFromFA(injToFA dfa)
fun injToNFA dfa = NFA.projFromFA(injToFA dfa)
```

And to operate on a DFA, it must do something like:

```ml
fun foo dfa =
  let val {stats, start, accepting, trans} =
      FA.toConcr dfa
  ...
  val concr =
      {stats = ....,
      start = ....,
      accepting = ....,
      trans = ....}
    in FA.fromConcr concr end
```
Summary

My experience using SML and SML/NJ to implement Forlan was generally positive:

- It was typically easy to naturally and efficiently implement the book’s mathematics in SML.
- Both the core and module languages served well.
- SML/NJ proved robust and provided sufficient speed.

But the lack of some language features was frustrating:

- type \texttt{nat}, successor as a constructor, \texttt{int} not arbitrary precision;
- subtyping;
- dependent types;
- recursive modules; and
- support for specifications.
Forlan Distribution

The Forlan distribution, including

- the draft textbook,
- the Forlan toolset, and
- a link to a paper on Forlan,

can be obtained from

http://alleystoughton.us/forlan